Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature
نویسندگان
چکیده
Coherence in light-matter interaction is a necessary ingredient if light is used to control the quantum state of a material system. Coherent effects are firmly associated with isolated systems kept at low temperature. The exceedingly fast dephasing in condensed matter environments, in particular at elevated temperatures, may well erase all coherent information in the material at timescales shorter than a laser excitation pulse. Here we show for an ensemble of semiconductor quantum dots that even in the presence of ultrafast dephasing, for suitably designed condensed matter systems quantum-coherent effects are robust enough to be observable at room temperature. Our conclusions are based on an analysis of the reshaping an ultrafast laser pulse undergoes on propagation through a semiconductor quantum dot amplifier. We show that this pulse modification contains the signature of coherent light-matter interaction and can be controlled by adjusting the population of the quantum dots via electrical injection.
منابع مشابه
A Proposal for a New Method of Modeling of the Quantum Dot Semiconductor Optical Amplifiers
With the advancement of nanoscale semiconductor technology,semiconductor optical amplifiers are used to amplify and process all-optical signals. Inthis paper, with the aim of calculating the gain of quantum dot semiconductor opticalamplifier (QD-SOA), two groups of rate equations and the optical signal propagatingequation are used in the active layer of the device. For t...
متن کاملThe Effects of Strained Multiple Quantum Well on the Chirped DFB-SOA All Optical Flip-Flop
In this paper, based on the coupled-mode and carrier rate equations, a dynamic model and numerical analysis of a multi quantum well (MQW) chirped distributed feedback semiconductor optical amplifier (DFB-SOA) all-optical flip-flop is precisely derived. We have analyzed the effects of strains of QW and MQW and cross phase modulation (XPM) on the dynamic response, and rise and fall times of the ...
متن کاملZSM-5 Zeolite As Host Material for Semiconductor Nanoparticles
This work describes the optical and structure properties of nickel sulfide and cobalt sulfide nanoparticles in ZSM-5 zeolite. The samples were obtained by sulfidation of the Ni2+ and Co2+ ion-exchange ZSM-5 zeolites in a Na2S solution at room temperature. The optical properties of the samples were studied by UV-visible spectroscopy. Their crystalline structure and morphology were studied by X-r...
متن کاملExternal-Cavity Tapered Semiconductor Ring Lasers
Laser operation of a tapered semiconductor amplifier in a ring-oscillator configuration is presented. In first experiments, 1.75W time-average optical output power has been achieved at room temperature. Results for different configurations and feedback ratios are shown and compared to the output characteristics of the same device in a masteroscillator power-amplifier configuration. Dynamical an...
متن کاملUltrafast photon-number correlations from dual-pulse, phase-averaged homodyne detection
We propose and demonstrate a method for determining the two-time photon-number correlations of an optical field on ultrafast time scales. The method, which uses dual-pulse, phase-averaged, balanced-homodyne detection, is sensitive at the single-photon level and can have a quantum efficiency approaching 100%. Using this method we have determined the two-time, photon-number correlations on subpic...
متن کامل